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Abstract. Optimization on Stiefel manifolds was discussed by Rapcsák in earlier papers, and

some global optimization methods were considered and tested on Stiefel manifolds. In the
paper, test functions are given with known global optimum points and their optimal function
values. A restriction, which leads to a discretization of the problem is suggested, which results

in a problem equivalent to the well-known assignment problem.
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1. Introduction

In 1935, Stiefel introduced a differentiable manifold consisting of all the
orthonormal vector systems x1; x2; . . . ; xk 2 Rn, where Rn is the n-dimen-
sional Euclidean space and kOn (Stiefel, 1935–36). Bolla et al. analyzed
the maximization of sums of heterogeneous quadratic functions on Stiefel
manifolds based on matrix theory and gave the first-order and second-
order necessary optimality conditions and a globally convergent algorithm
(Bolla et al., 1998). Rapcsák introduced a new coordinate representation
and reformed the original one to a smooth nonlinear optimization prob-
lem. Then, by using Riemannian geometry and the global Lagrange multi-
plier rule (Rapcsák, 2001, 2002, 2003) local and global, first-order and
second-order necessary and sufficient optimality conditions were stated,
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and a globally convergent class of nonlinear optimization methods was
suggested.
In the paper, some special global optimization problems on Stiefel mani-

folds are investigated and test functions are given for the global optimiza-
tion tools. Consider the following optimization problem:

min
Xk
i¼1

xTi Aixi ð1Þ

xTi xj ¼ dij; 1Oi; jOk;

xi 2 Rn; i ¼ 1; . . . ; k; nP2;
ð2Þ

where Ai, i ¼ 1; . . . ; k, are symmetric matrices, and dij is the Kronecker
delta. Furthermore, let Mn;k denote the Stiefel manifold consisting of all
the orthonormal systems of k vectors in the n-dimensional Euclidean space.
Hence, we deal with the optimization of a special type of quadratic func-
tions subject to quadratic constraints. In the literature of optimization, not
too many efficient methods giving a good approximate solution of this
problem are known. It is also difficult to provide feasible solutions for it
(Horst and Pardalos, 1995). This is the reason why special instances of the
original problem are investigated.
In (Balogh et al., 2002), solution methods and techniques are given for

the numerical optimization of problem (1) and (2). The structure of the
optimum points is characterized in the lowest-dimensional interesting case
and a criterion is given for the finiteness of the number of the optimum
points on M2;2 of (1) and (2). The case of diagonal matrices Ai,
i ¼ 1; . . . ; k, where all coordinates of the optimum points are from the set
f0;þ1;�1g, is dealt with separately (except the extreme case when all feasi-
ble points are optimum points, as well).
Some reduction steps and numerical results are presented in (Balogh et

al., 2002) for the numerical optimization of (1) and (2). To illustrate them,
a numerical study was attached, in which the computational costs were
demonstrated by the number of functions (also gradient and constraint)
evaluations and CPU time to measure the complexity of the problems. In
other words, we studied problem (1) and (2) numerically to understand the
structure of the problem and investigated an example with a diagonal coef-
ficient matrix by using a stochastic method (Csendes, 1988) and a reliable
procedure (Corliss and Kearfott, 1999; Kearfott, 1999). The aim of the
application of the last one was to obtain verified solutions. It is worth
mentioning that the GlobSol program (Corliss and Kearfott, 1999; Kear-
fott, 1999) provided verified solutions only by using spherical substitutions.
Without transformations like these, a similar problem on M3;3 required a
few days of running time—and without obtaining a verified solution. Thus,
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it seems indispensable to use some reduction steps to make the numerical
tools reliable, effective and efficient. Some accelerating modifications are
suggested in the paper. We focused again on a special problem instance
where the coefficient matrices in the objective function are diagonal.
Since the results can easily be nonoptimal as it was seen, in the paper,

we generate a series of test problems of arbitrary size (with n and k as
parameters). These problems belong to an important area of global optimi-
zation (see Floudas et al., 1990, 1999), to the constrained test problems
which are used in several industrial applications.
In the paper, a theoretical investigation is completed on a discretization

of the problem (1)–(2), which results in the well-known assignment prob-
lem. It can be easily seen that instead of the objective function (1), we can
use a different one, e.g., the quadratic functionXn

i¼1

Xn
j¼1

Xn
t¼1

Xn
r¼1

aijxitxjrbtr:

The respective restriction to the values give an NP-hard problem, the qua-
dratic assignment problem, see (Pardalos et al., 1994) or (Sahni and Gonz-
ales, 1996).

2. Test Functions on Mn;k with known Minimum Points and Minimum Value

In this section, first, special constrained test functions are given with
known optimum points and optima on each Mn;k Stiefel manifold. This
field, defining test functions, plays an important role in the literature of
global optimization, for example, in theory and algorithm design, and nat-
urally, in their tests (see Floudas et al., 1990; Horst and Pardalos, 1995).
The handbook of Pardalos and Floudas does not contain a lot of con-
strained problems of global optimization, and the appearing test examples
are, generally, from industrial applications (Horst and Pardalos, 1995).
As reported in (Balogh et al., 2002), a simple example of (Rapcsák,

2002), given on M2;2 with diagonal coefficient matrices requires about 3
million function evaluations (out of which 2.9 million ones are the dense
constraint evaluations) by using the GlobSol software (Corliss and Kear-
fott, 1999; Kearfott, 1999). The reason for this large computational effort
is that the algorithm aims to verifying the solutions with sophisticated
interval arithmetic based techniques. Furthermore, the received boxes could
not be verified, we know that they do not contain the optimal solution.
Only the version with the polar form gives verified solutions. A not too
complicated optimization problem on M3;3 required about 3.5 days of
CPU time on our computer and gave 36 different nonverified solutions
with different function values through using the GlobSol program (Corliss
and Kearfott, 1999; Kearfott, 1999). However, the hull of the nonverified
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boxes is about 10�24 times smaller than that of the starting one. The cor-
rectness of these values is very hard to be checked, because this question is
equivalent to the original problem. That is why it makes sense to provide
special problems on Mn;k to test the efficiency and reliability of our algo-
rithms. The advantage of the consideration of test problems like this is that
we can handle objective functions more easily: the optimum points and
optimum values are known on an arbitrary Mn;k Stiefel manifold. For
instance, on M3;3 we can give a problem with 8 a priori known global opti-
mal solutions. Let us consider minimization problem (1) and (2) on M3;3,
which is given by the diagonal coefficient matrices

A1 ¼ diagð�1; 2; 3Þ; A2 ¼ diagð4;�5; 6Þ; A3 ¼ diagð7; 8;�9Þ:

This is a good test function for the optimization methods, because all its
global optimum points are easy to determine. Constraints (2) express that
xi, (i ¼ 1,2,3) are on the unit sphere. It follows that 0Ox2ijO1 for all 1Oi,
jOn, and a lower bound can be obtained for the objective function value
as follows:

fðxÞ ¼ ð�1Þx211 þ 2x212 þ � � � þ ð�9Þx233Pð�1Þ � 1þ 2 � 0þ � � � þ ð�9Þ � 1

for x 2 M3;3. It is easy to see that this optimum value is realized at the
points

�1; 0; 0; 0;�1; 0; 0; 0;�1;

and the optimum value is equal to �15. Here, all the possible combina-
tions of values �1 give minimum points. The minimum value cannot be
attained at another point of M3;3, since at different points, the function val-
ues are obviously greater.
This method creating test functions on M3;3 can be generalized for arbi-

trary values n, k ðnPkP2Þ with the same property, i.e., the minimum
points and the minimum value can be determined in an easy way. These
problems are formulated for every possible pair n, k on Mn;k as follows:

EXAMPLE 1. Let us consider problem (1) and (2), where

A1 ¼ diagðl1; 2; 3; . . . ; nÞ;
A2 ¼ diagðnþ 1; l2; nþ 3; nþ 4; . . . ; 2nÞ;
. . . ;

Ai ¼ diagðnði� 1Þ þ 1; . . . ; nði� 1Þ þ i� 1; li; nði� 1Þ þ iþ 1; . . . ; niÞ;
. . . ;

Ak ¼ diagðnðk� 1Þ þ 1; . . . ; nk� 1; lkÞ ð3Þ
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are the diagonal coefficient matrices and li < 0, i ¼ 1; . . . ; k.

The above problem is a special case of Example 1 where n ¼ 3, k ¼ 3;
l1 ¼ �1, l2 ¼ �5 and lk ¼ l3 ¼ �9. A further choice could be
li ¼ �1; i ¼ 1; . . . k and keep the other values. In this case, the function
value is the sum of all li, i.e., �k. The next statement shows that the places
of the minima can be determined in a similar way to that of in Example 1.
Let us introduce some notations.
Let �En;k denote all the orthonormal systems of k number of n-vectors

where the ith vector ði ¼ 1; . . . ; kÞ is the ith unit vector (or multiplied by
�1). In this way, each vector has only one nonzero coordinate, the ith one
of the ith vector, the value of which is either 1 or �1 (i ¼ 1; . . . ; k). It fol-
lows that �En;k is a set of 2k orthonormal vector systems. If ei denotes the
ith unit vector, then

�En;k ¼ fð�e1; . . . ;�ekÞj � ei 2 fei;�eigg:

PROPOSITION 1. The set of the minimum points of ð1Þ-ð2Þ-type problems
with coefficient matrices ð3Þ and constraints ð2Þ is exactly �En;k.

Proof. It is sufficient to prove that an e� 2 �En;k is a feasible solution, fur-
thermore, that at any other feasible point x j2 � En;k; the objective function
value is greater than the optimum, i.e., fðxÞ > fðe�Þ.
(A) To see that a vector e� 2 �En;k is a feasible point of the given prob-

lem, it must be shown that it satisfies equations (2). It is obvious
that all the vector systems in �En;k are on the unit circle and they
are orthogonal, hence, they satisfy constraints (2) (see the earlier
argumentation), and hence they are feasible.

(B) Let us show now that the function value at any other feasible point
is greater than the minimum. Consider a vector system
ðy1; . . . ykÞ 2 Mn;k for which ðy1; . . . ykÞ 62 �En;k. Let us separate the
index set f1; . . . ; kg into two disjoint parts: S [ T ¼ f1; . . . ; kg such
that S contains all the indices of the vectors for which either ys ¼ es,
or ys ¼ �es. Then, T contains the rest of the indices, thus yt 6¼ �et
holds for any t 2 T. Due to the assumption, T 6¼ ; must hold. Thus,
the objective function value at the chosen point y isX

m2f1;...;kg
yTmAmym ¼

X
s2S

yTs Asys þ
X
t2T

yTt Atyt

¼
X
s2S

eTs Ases þ
X
t2T

yTt Atyt:
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Now, consider the difference from the minimum value:X
s2S

eTs Asesþ
X
t2T

yTt Atyt�
X
s2S

eTs Ases�
X
t2T

eTt Atet

¼
X
t2T

yTt Atyt�
X
t2T

eTt Atet ¼
X
t2T

yTt Atyt� eTt Atet
� �

¼
X
t2T

Xn
i¼1

atiiðy2ti� e2tiÞ

¼
X

i¼1;...;n;

aiii|{z}
<0

ðy2ii� 1Þ|fflfflfflffl{zfflfflfflffl}
O0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

P0

þ
X
t2T

X
i¼1;...;n; i6¼t

atiiy
2
ti|ffl{zffl}

P0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P0

P0:

Because of the assumptions, at least one term in the above sum is different
from zero, thus part (B) and hence the whole proposition is proved. (

2.1. SOME TECHNICAL NOTES

We have produced an infinite sequence of constrained global optimization
test problems. Each is defined on an Mn;k Stiefel manifold, ðnPkP2Þ, with
2k solutions, thus the number of the minimum points is exponential in k.
Moreover, the minimum value is easy to calculate: it is equal to the sum of
the negative coefficients in Ai, ði ¼ 1; . . . ; kÞ. This feature is advantageous
in testing some optimization codes, e.g., the ones which can utilize the
known minimum value (Casado et al., 2000).
The difficulty in these test problems caused by the great number of glo-

bal (and local) minima which can be decreased by the addition of well cho-
sen xij � xik terms to the objective function. By subtracting all xijxil,
i ¼ 1; . . . ; k; j; l ¼ 1; . . . ; n; j 6¼ l, for example, only two solutions remain (all
nonzero coordinates are either þ1, or �1, one coordinate per dimension,
and all other values are 0). Unfortunately, the obtained problem, is no
more of a diagonal type. To obtain a maximization problem, a matrix-Ai

must be applied, instead of Ai, for every index i.

EXAMPLE 2. Let us consider problem (1)–(2) where

A1 ¼ diagð�1; 2Þ;
A2 ¼ diagð3;�1Þ:

The objective function is then

fðxÞ ¼ �x211 þ 2x212 þ 3x221 � x222;

and the set of solution points is given by

x� ¼ ðð�1; 0ÞT; ð0;�1ÞTÞ
consisting of 22 ¼ 4 points. The optimum value is the sum of the negative
values in the diagonal, i.e., �2 in accordance with the above discussion.
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3. Restriction of the Feasible Points

In this section, we impose a special restriction on the set of feasible points
Mn;k. In the case of a special 0–1 discretization of (2) and a quadratic
objective function, an NP-hard problem, the quadratic assignment problem
(Sahni and Gonzalez, 1996) is obtained.
In (Balogh et al., 2002) and the previous section, several instances have

optimal solutions where every vector lies on an n-dimensional coordinate
axis (that is, one of their coordinates is 1 or �1, and the n� 1 other
coordinates are zero). It was shown that on M2;2 the optimal solutions’ type
is the above in the case of diagonal coefficient matrices (the only exception
if the function is constant on the whole M2;2Þ. In cases like this, all solutions
are from the set of the crossing points of the n-dimensional hypersphere
and the coordinate axes. In other words, not only the given problems and
test problems have solutions of this type, but also other problems can be
included in this class. The common feature of these problems is that the
objective function has only squared terms.
This fact served as motivation to restrict the feasible solution set of the

problem. Consider the following restriction: if the set of the feasible points
is a subset of Mn;k, the feasible solutions should also contain all k vectors
on an n-dimensional coordinate axis. We will perform this investigation in
three steps: first, only n� n problems are considered in which there are
square components only (the case of diagonal matrices). Then, we study the
problems of the same type of n� k size, and finally, the general problem.
All these cases will be considered on this restricted feasible set. If, however,
the objective function is not of type (1), the structure of the solution set is
an open question even on this restricted set of feasible points denoted by L0.
What can these restrictions be applied to? On the one hand, they can be

used to approximate the optimum value f � and this approximation can
also be applied in some optimization methods to accelerate their conver-
gence (see, e.g., (Casado et al., 2000)).
Let us return to the mentioned three-step-procedure. The above restric-

tion of set (2) of feasible points to L0 leads us back to the well-known
assignment problem, as stated in the next proposition.

PROPOSITION 2. If the set of the feasible points Mn;k in problem ð1Þ�ð2Þ is
restricted to L0 defined as the set of the crossing points of the n-dimensional
unit sphere, the problem determined by ð1Þ and the restriction of ð2Þ to L0 is
equivalent to an assignment problem.

Proof. The proof needs a three-step-procedure. We start with the first spe-
cial case on Mn;n, containing only diagonal coefficient matrices Ai

(i ¼ 1; . . . ; k ¼ n) in the objective function (1). Then, using the first state-
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ment, the above fact can be generalized easily for Mn;k with diagonal form
matrices as well. Using the first and second statements in the third phase,
we give the proof of the whole proposition. It is the case of the general
form matrices of (1) on Mn;k.
1. Problem (1) and (2) on Mn;n is equivalent to the assignment problem

if the coefficient matrices are diagonal, and the set of the possible solutions
L0 is the set of crossing points of the n-dimensional unit sphere and the
coordinate axes of Rn.
The well-known assignment problem is as follows:

min
Xn
i¼1

Xn
j¼1

xijaij ð4Þ

subject toXn
t¼1

xit ¼ 1 ði ¼ 1; . . . ; nÞ; ð5Þ

Xn
t¼1

xtj ¼ 1 ðj ¼ 1; . . . ; nÞ; ð6Þ

xij 2 f0; 1g ði ¼ 1; . . . ; n; j ¼ 1; . . . ; nÞ; ð7Þ
where the coefficients aij form an n� n matrix A0. We have to show that
the objective function (1) and constraints (2) result in (4–7) on the new
restricted set L0. Notice first that each xi has n� 1 zero components, and
exactly one component is equal to one.
Let the elements aij of the A0 matrix of the assignment problem be the

matrix-elements ðAiÞjj of (1). Furthermore, let the assignment problem’s xij
variables be the jth elements of x2i in (1). Under these assumptions, con-
straints (5)–(7) of the assignment problem imply constraints (2) of the origi-
nal problem, and the objective function (4) provides the original one in (1).
2. The above statement can be generalized for the Stiefel manifolds Mn;k.

A problem (1)–(2) on Mn;k with the previous restriction is equivalent to an
assignment problem.
To show this, consider an assignment problem with an n� n matrix

instead of the k� n. Fill the missing n� k rows with the value of Mþ 1,
where M is the sum of the absolute values of the first k columns. After solv-
ing the obtained assignment problem, e.g., by the Hungarian method, and
leaving out the last n� k vectors, there remains a system of k n-vectors
which is exactly the solution of the original problem, as it can be seen easily.
Let us return now to the general case from the objective functions’ point

of view: we will consider problem (1)–(2), but on the restriction of Mn;k to
the vectors of the coordinate axes (5)–(7).
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3. It is sufficient to show that the latter problem is equivalent to a prob-
lem the objective function of which contains the terms xixi multiplied by
their coefficient ðAiÞii for every i. This problem is equivalent to the assign-
ment problem which has been proved above.
Let us examine (1) on the subset L0. Each vector in L0 is of a special

property, namely, each coordinate except one of these is 0. Thus, in the
objective function (1), each term xijxjl is zero, except the terms x2ii.
Formally:

Xk
i¼1

xTi Aixi ¼
Xk
i¼1

Xn
j¼1

Xn
l¼1

xijðAiÞjlxil

 !
¼
Xk
i¼1

xiiðAiÞiixii ¼
Xk
i¼1

x2iiðAiÞii:

It follows that we have obtained a problem which is equivalent to the
problem of the previous proposition. (

Returning to the general case, a question can be raised: how can a gen-
eral problem (the objective function of which is not necessarily given in the
form (1)) be solved, considering the above restriction to the L0 subset of
Mn;k. In this case, if n ¼ k, we have a special assignment problem, in which
the 0–1 value restriction of the problem is considered.
By the 0–1 restriction on the set of feasible points defined by (2), instead

of the f0;�1g restriction, we obtain a set of constraints of an assignment
problem. This can also be obtained by writing 1 into the appropriate place,
and writing 0 into all the other ones.
If the objective function is arbitrary quadratic, a quadratic assignment

problem is obtained which is an NP-hard problem (Sahni and Gonzalez,
1996). Several relevant theoretical results can be found in the literature, for
example, Pardalos et al. cite 254 related publications in their survey
(Pardalos et al., 1994). The linear assignment problem is an LP-problem
having many special cases (e.g., transportation problem).
On the one hand, it is interesting in itself to examine our problem with

the restriction L0 of Mn;k, on the other hand, this may have some advanta-
ges. As we have seen above, the solutions can be provided in the case of
diagonal coefficient matrices. In general, this technique can be applied to
arbitrary coefficient matrices by obtaining an approximation for the optima.
The solution of the problem, subject to the set L0 of feasible points, can be
arbitrarily far from the solution of the original problem on Mn;k.
Another open question, regarding the last observation, is whether a good

heuristic can be given regarding the approximation of the optimum value
f � with the restriction of the feasible points of the problem to the points of
the coordinate axis, just like regarding the problems having square compo-
nents only.
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EXAMPLE 3. Consider an example on the manifold M3;2 with the objective
function

3x211 þ 6x212 þ 4x213 þ 7x11x12 � 4x11x13 � 18x12x13 � 3x221 þ 5x222

þ 3x223 � 6x21x22 þ 7x21x23 � 12x22x23

to be minimized on the restricted set of 0-1 valued coordinates.
This problem can be related to a problem (1)–(2) with the matrices

A1 ¼
3 7=2 �2

7=2 6 �9
�2 �9 4

0
@

1
A;

A2 ¼
�3 �3 7=2
�3 5 �6
7=2 �6 3

0
@

1
A:

According to the last result, the optimal solution is

x� ¼ ðð0; 0; 1ÞT; ð1; 0; 0ÞTÞ;
and the optimum value is 1.

4. Conclusions

It has been demonstrated earlier that a simple (9-variable) problem on
M3;3 runs for more than 3 days on an average computer if we require reli-
able results. That is why the possible speed up improvements should be
theoretically investigated both in geometrical reductions and in numerical
tools. Hence, appropriate testing examples should be necessary. The paper
suggests test examples with known optimal solutions to measure the effi-
ciency of the numerical tools. In a special case, the diagonal matrices Ai

(i ¼ 1; . . . ; k) have been analyzed in details. Furthermore, an interesting
special restricted problem was presented which is equivalent to an assign-
ment problem where the number of minimum points is finite, although it is
exponential in the size of the input. An interesting question is how to char-
acterize the criterion of the finiteness of the number of the optimum points
on Mn;k in the studied problems. We intend to try other computational
tools such as an interval based constraint handling global optimization
method (Markót et al., submitted for publication).
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